How do I add an object to the beginning of Stream?

To add an object to the beginning of a list using Java Streams, we typically cannot directly prepend an object in a stream-friendly way because Streams themselves are immutable and don’t directly modify the original collection. However, we can achieve this by creating a new list with the desired order.

Here’s how we can approach it:

package org.kodejava.stream;

import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class StreamBeginningAdd {
    public static void main(String[] args) {
        List<String> originalList = Arrays.asList("B", "C", "D");
        String newElement = "A";

        // Add the new element at the beginning using Stream
        List<String> updatedList = Stream.concat(Stream.of(newElement), originalList.stream())
                .collect(Collectors.toList());

        // Output: [A, B, C, D]
        System.out.println(updatedList);
    }
}

Explanation:

  1. Stream.of(newElement): Wraps the new element as a single-element stream.
  2. originalList.stream(): Converts the existing list into a stream.
  3. Stream.concat(): Combines the two streams — placing the newElement stream first and the original list’s stream second.
  4. collect(Collectors.toList()): Materializes (collects) the combined stream into a new list.

This ensures immutability of the original list and creates a new list with the desired order.

How do I sum a BigDecimal property of a list of objects using Java Stream API?

If we have a list of objects, and we want to sum a BigDecimal property of these objects, we can achieve this using the Java Stream API. This API provides a clean and efficient way to process collections of objects. To sum the BigDecimal amounts, you can use the map and reduce methods of the Stream API.

As an example, we have a class named Transaction with a BigDecimal property named amount. We have a list of Transaction objects, and we want to calculate the total sum of the amount properties.

In the code snippet below we do the following:

  • Creating Transactions: We create a list of Transaction objects, each with a different BigDecimal amount.
  • Filter Transactions and its amount: We filter to exclude the null transaction and null transaction amount.
  • Mapping to Amounts: We use the map method to convert each Transaction object to its amount property.
  • Summing the Amounts: The reduce method takes two parameters: an identity value (BigDecimal.ZERO) and an accumulator function (BigDecimal::add). The accumulator function adds each BigDecimal in the stream to the running total.
  • Printing the Result: Finally, we print the total sum of the amounts.
package org.kodejava.stream;

import java.math.BigDecimal;
import java.util.Arrays;
import java.util.List;

public class BigDecimalSumExample {
    public static void main(String[] args) {
        // Create a list of transaction objects
        List<Transaction> transactions = Arrays.asList(
                new Transaction(new BigDecimal("10.50")),
                null,
                new Transaction(new BigDecimal("30.25")),
                new Transaction(null),
                new Transaction(new BigDecimal("11.49"))
        );

        // Sum the amount properties using stream
        BigDecimal totalAmount = transactions.stream()
                // Filter out null Transaction objects and Transaction objects
                // with null amounts
                .filter(t -> t != null && t.getAmount() != null)
                .map(Transaction::getAmount)
                .reduce(BigDecimal.ZERO, BigDecimal::add);

        // Print the result
        System.out.println("Total Amount: " + totalAmount);
    }

    static class Transaction {
        private final BigDecimal amount;

        public Transaction(BigDecimal amount) {
            this.amount = amount;
        }

        public BigDecimal getAmount() {
            return amount;
        }
    }
}

Below is another example, we want to sum just a List<BigDecimal> values. To sum the values we can use the reduce method as shown in the code snippet below.

package org.kodejava.stream;

import java.math.BigDecimal;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;

public class BigDecimalListSumExample {
    public static void main(String[] args) {
        // Create a list of BigDecimal values
        List<BigDecimal> amounts = Arrays.asList(
                new BigDecimal("10.50"),
                new BigDecimal("20.75"),
                new BigDecimal("30.25"),
                null,
                new BigDecimal("11.49")
        );

        // Sum the BigDecimal values using stream
        BigDecimal totalAmount = amounts.stream()
                .filter(Objects::nonNull)
                .reduce(BigDecimal.ZERO, BigDecimal::add);

        // Print the result
        System.out.println("Total Amount: " + totalAmount);
    }
}

Using Java Stream API to sum a BigDecimal property of a list of objects or a list of BigDecimal values are both concise and efficient. The map and reduce methods streamline the process, making our code more readable and maintainable. This approach can be applied to various scenarios where we need to aggregate data from a list of objects.

How do I sort entries of a map by its keys or values?

To sort the entries of a map by keys or values in Java, you can convert your Map to a Stream, sort it, and then collect it back into a Map.

Here’s an example of sorting by keys:

package org.kodejava.util;

import java.util.HashMap;
import java.util.Map;
import java.util.LinkedHashMap;
import java.util.stream.Collectors;

public class MapSortComparingByKey {
    public static void main(String[] args) {
        Map<String, Integer> map = new HashMap<>();
        map.put("Apple", 10);
        map.put("Orange", 20);
        map.put("Banana", 30);

        Map<String, Integer> sortedByKey = map.entrySet().stream()
                .sorted(Map.Entry.comparingByKey())
                .collect(Collectors.toMap(
                        Map.Entry::getKey,
                        Map.Entry::getValue,
                        (oldValue, newValue) -> oldValue,
                        LinkedHashMap::new
                ));

        sortedByKey.forEach((key, value) -> System.out.println("Key: " + key + ", Value: " + value));
    }
}

Output:

Key: Apple, Value: 10
Key: Banana, Value: 30
Key: Orange, Value: 20

In the example map.entrySet().stream() creates a Stream consisting of the entries in the map. The sorted(Map.Entry.comparingByKey()) method sorts the entries based on keys. The sorted entries are collected back into a new LinkedHashMap (which maintains the order of its elements).

You can sort by values in a similar way:

package org.kodejava.util;

import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.stream.Collectors;

public class MapSortComparingByValue {
    public static void main(String[] args) {
        Map<String, Integer> map = new HashMap<>();
        map.put("Apple", 10);
        map.put("Orange", 20);
        map.put("Banana", 30);

        Map<String, Integer> sortedByValue = map.entrySet().stream()
                .sorted(Map.Entry.<String, Integer>comparingByValue().reversed())
                .collect(Collectors.toMap(
                        Map.Entry::getKey,
                        Map.Entry::getValue,
                        (oldValue, newValue) -> oldValue,
                        LinkedHashMap::new
                ));

        sortedByValue.forEach((key, value) -> System.out.println("Key: " + key + ", Value: " + value));
    }
}

Output:

Key: Banana, Value: 30
Key: Orange, Value: 20
Key: Apple, Value: 10

In this example, sorted(Map.Entry.<String, Integer>comparingByValue().reversed()) sorts the entries based on values in descending order. The reversed() method is used to reverse the natural ordering. If you want to sort in ascending order, omit the reversed() call.

How do I use Collectors.maxBy() method?

The Collectors.maxBy() method is used to find the maximum element from a stream based on a certain comparator. It returns an Optional which contains the maximum element according to the provided comparator, or an empty Optional if there are no elements in the stream.

Here’s a simple example where we have a list of integers, and we want to find the biggest integer:

package org.kodejava.stream;

import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
import java.util.Optional;
import java.util.stream.Collectors;

public class MaxByDemo {
    public static void main(String[] args) {
        List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);

        Optional<Integer> maxNumber = numbers.stream()
                .collect(Collectors.maxBy(Comparator.naturalOrder()));

        maxNumber.ifPresent(System.out::println);
    }
}

In this example:

  • We create a Stream from the list of integers.
  • We then use Collectors.maxBy(Comparator.naturalOrder()) to get the maximum number. Comparator.naturalOrder() is a shortcut for Comparator.comparing(Function.identity()).
  • Collectors.maxBy() returns an Optional because the stream could be empty.
  • We print the maximum number if it exists.

When you run this program, it will print “5” because 5 is the biggest number in the list.

Keep in mind that if the stream is empty, maxNumber will be an empty Optional, and nothing will be printed.

How do I use Collectors.minBy() method?

The Collectors.minBy() method in Java 8 is used to find the minimum element from a stream of elements based on a certain comparator. It returns an Optional describing the minimum element of the stream, or an empty Optional if the stream is empty.

Here’s an example of how to use Collectors.minBy(). Assume we have a list of integers, and we want to find the smallest element.

package org.kodejava.stream;

import java.util.Arrays;
import java.util.List;
import java.util.Optional;
import java.util.stream.Collectors;

public class CollectorsMinBy {
    public static void main(String... args) {
        List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);

        Optional<Integer> min = numbers.stream()
                .collect(Collectors.minBy(Integer::compare));

        min.ifPresent(System.out::println);
    }
}

In this code:

  • We have a list of integers.
  • We create a Stream from the list and collect the stream into an Optional that might hold the minimum value via the Collectors.minBy(Integer::compare) collector.
  • Integer::compare is a method reference that is used to instruct Collectors.minBy() on how to compare the integers.
  • min.ifPresent(System.out::println) checks if the Optional has a value. If it does, the value is passed to the System.out::println method and printed to the console.

When run, this program prints the smallest number in our list, which is “1”.

Note that if the list is empty, min will hold an empty Optional, and min.ifPresent(System.out::println) will not print anything.

Here’s another example of how you can use the Collectors.minBy() method to find the object containing the minimum value for a certain property. Let’s assume we have a Person class and a list of Person objects, and we want to find which Person has the smallest age.

package org.kodejava.stream;

import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
import java.util.Optional;
import java.util.stream.Collectors;

public class CollectorsMinByObjectProperty {
    public static void main(String... args) {
        List<Person> people = Arrays.asList(
                new Person("Rosa", 21),
                new Person("Bob", 25),
                new Person("Alice", 18),
                new Person("John", 22));

        Optional<Person> youngestPerson = people.stream()
                .collect(Collectors.minBy(Comparator.comparingInt(Person::getAge)));

        youngestPerson.ifPresent(System.out::println);
    }

    static class Person {
        String name;
        int age;

        Person(String name, int age) {
            this.name = name;
            this.age = age;
        }

        public int getAge() {
            return age;
        }

        @Override
        public String toString() {
            return "Person{" +
                   "name='" + name + '\'' +
                   ", age=" + age +
                   '}';
        }
    }
}

Output:

Person{name='Alice', age=18}

In this code:

  • The Person class has two fields, name and age, and a getter for the age field.
  • We have a list of Person objects.
  • We create a Stream from the list and then use Collectors.minBy() to find the Person with the smallest age. To do this, we use Comparator.comparingInt(Person::getAge), which compares the Person objects based on their age.
  • Collectors.minBy() returns an Optional that might hold the Person with the smallest age.
  • If such a Person exists, we print that Person using System.out::println.

This program prints: Person{name='Alice', age=18}, as Alice is the person with the smallest age.